I he X-ray Structure Determination and Semiempirical PM3 Calculations of 2,4,4,6,6-Pentachloro-2-(piperidyl)cyclotri(phosphazene)

David Adam, Thomas M. Klapötke,* and Axel Schulz

University of Glasgow, Department of Chemistry, Glasgow G12 8QQ (UK), Telefax: Int. code ` *(141) 330 4199; E-mail: tmk@chem.gla.ac.uk*

Received 16 December 1996

ABSTRACT

*The structure of 2,4,4,6,6-pentachloro-2-(piperidyl) cyclotri(phosphazene) (***1***) was determined by singlecrystal X-ray diffraction analysis. Compound* **1** *crystallizes in the orthorhombic space group* P_{bea} *with* $Z =$ *8 and unit cell dimensions* $a = 8.316(2)$ *, b = 17.261(3), and c = 22.007(4) Å. The experimentally obtained structural parameters for compound* **1** *compare well with those calculated at the semiempirical PM3 level of theory. These results give credence to the PM3-calculated structure of 2,4,4,6,6-pentaazido-2- (piperidyl)cyclotri(phosphazene) (***2***) for which presently there are no experimental data available.†* q *1997 John Wiley & Sons, Inc. Heteroatom Chem* **8***: 283– 286, 1997.*

INTRODUCTION

Quite recently, we have reported in this journal on the experimental (X-ray) and PM3-computed structures of $P_3N_3Cl_4(NC_5H_{10})_2$ and $P_3N_3Cl_3(NC_5H_{10})_3$, as well as on computational studies of the corresponding azides $P_3N_3(N_3)_4(NC_5H_{10})_2$ and $P_3N_3(N_3)_3$ (NC_5H_{10}) ₃ [1]. We were able to establish that the semiempirical PM3 level of theory is suitable to predict the structures of phosphazene derivatives in a very cpu time efficient way. We have now extended our studies to the pentachloro phosphazene derivative **1** and its azide analog **2**. For **2**, there are presently no experimental structural data available. In the work presented in this article, chose the Cl compound $P_3N_3Cl_5(NC_5H_{10})$ (1), which can easily be obtained in crystalline form, to determine the structure by X-ray diffraction methods and by semiempirical PM3 calculations. We then decided to focus on the computed structure of the azido derivative $P_3N_3(N_3)_{5}(NC_5H_{10})$ (**2**) for which there are presently no experimental data available.

EXPERIMENTAL

Materials and Methods

Single crystals of compound **1** (crystallized from petroleum ether) suitable for X-ray diffraction analysis were provided to us by Dr. Porte (see Acknowledgments). The pentaazido derivative **2** was prepared by the reaction of **1** with activated sodium azide in aqueous acetone and was isolated by extraction with diethyl ether following the literature procedure for the preparation of hexaazidophosphazene [2,3]. Correct C/H/N analyses were obtained for compound **1** (compound **2** was, for safety reasons, not subjected to an elemental analysis). Both compounds (**1** and **2**) show only one very broad resonance in the 14N NMR (14.462 MHz, PW = $48 \mu s$, 5000 scans, 20°C,)

^{*}To whom correspondence should be addressed; LMU Munich, Inst. of Inorganic Chemistry, D-80333 Munich, Germany.

 \dagger Non-SI units employed: kcal \approx 4.184 kJ, Å = 10⁻¹⁰ m (since these units are still used in computational chemistry, we employed them throughout the article).

FIGURE 1 Molecular structure of **1** in the crystal (ORTEP representation).

FIGURE 2 PM3-computed molecular structure of **2**.

TABLE 1 Selected Measured (X-ray) and Computed (PM3) Bond Lengths (\AA) and Angles (\degree) for Compounds **1** and 2^a

(1)	X -ray (1)	PM3(1)	(2)	PM3(2)
CI1-P1	2.033(2)	2.051	N1a-P1	1.774
Cl3-P2	2.006(2)	2.031	N ₃ a-P ₂	1.746
CI5-P3	2.006(2)		2.027 N5a-P3	1.766
P1-N3	1.596(4)		1.664 P1-N3	1.684
P2-N1	1.562(3)		1.630 P2-N1	1.661
P3-N2	1.575(4)		1.639 P3-N2	1.664
CI2-P2	1.987(2)		2.027 N2a-P2	1.766
CI4-P3	2.000(2)		2.030 N4a-P3	1.747
P1-N1	1.601(4)	1.667	P ₁ -N ₁	1.668
P1-N4	1.620(3)		1.740 P1-N4	1.760
P2-N2	1.586(3)		1.642 P2-N2	1.663
P3-N3	1.568(3)		1.635 P3-N3	1.657
			N1a-N1b	1.240
			N ₁ b-N ₁ c	1.128
CI1-P1-N1	106.4(1)		107.5 N1a-P1-N1	110.2
CI1-P1-N3 CI1-P1-N4	106.2(2) 106.4(1)		108.5 N1a-P1-N3 100.7 N1a-P1-N4	108.3
N1-P1-N3	117.4(2)		108.8 N1-P1-N3	100.9 111.0
N1-P1-N4	109.9(2)		115.7 N1-P1-N4	113.2
N3-P1-N4	109.9(2)		114.9 N3-P1-N4	112.6
Cl2-P2-Cl3	101.1(7)		100.0 N2a-P2-N3a	98.9
Cl2-P2-N1	108.2(1)		112.8 N2a-P2-N1	113.2
Cl2-P2-N2	109.0(2)		111.1 N2a-P2-N2	115.0
Cl3-P2-N1	110.7(1)		110.0 N3a-P2-N1	109.9
Cl3-P2-N2	107.1(1)		110.8 N3a-P2-N2	108.0
N1-P2-N2	119.1(2)		111.5 N1-P2-N2	111.0
CI4-P3-CI5	100.5(1)		100.2 N4a-P3-N5a	98.5
CI4-P3-N2	108.7(2)		111.0 N4a-P3-N2	108.8
CI4-P3-N3	109.7(2)		109.4 N4a-P3-N3	111.4
CI5-P3-N2	107.7(1)		111.2 N5a-P3-N2	112.8
CI5-P3-N3	109.4(2)		112.4 N5a-P3-N3	113.1
N2-P3-N3	119.2(2)		112.1 N2-P3-N3	111.5
P1-N1-P2	120.7(2)		129.6 P1-N1-P2	124.8
P2-N2-P3	120.4(2)		127.9 P2-N2-P3	124.4
P1-N3-P3	121.3(3)		128.9 P1-N3-P3	124.2
P1-N4-C1	117.5(3)		119.4 P1-N4-C1	117.4
P1-N4-C5	118.3 (2)		118.3 P1-N4-C5 N1a-N1b-N1c	119.6 173.0
N3-P1-N1-P2	13.0(3)		12.1 N3-P1-N1-P2	28.1
N4-P1-N1-P2	139.5(2)		143.2 N4-P1-N1-P2	155.9
N1-P1-N3-P3	$-9.3(4)$		-12.6 N1-P1-N3-P3	-27.6
N4-P1-N3-P3	– 135.8 (2)		-144.2 N4-P1-N3-P3	-155.8
N2-P2-N1-P1	$-14.4(3)$		-6.6 N2-P2-N1-P1	-29.3
N1-P2-N2-P3	11.9(4)		0.2 N1-P2-N2-P3	30.5
N3-P3-N2-P2	$-8.2(4)$		-0.3 N3-P3-N2-P2	-30.4
N2-P3-N3-P1	7.0(4)		7.7 N2-P3-N3-P1	28.7
£ ^{PM3} /kcal				
$mol-1$		-2384.0		-3514.3
<i>zpe</i> /kcal				
mol-1		105.9		
NIMAG		0		0

aAtomic labeling for the PM3 structures in analogy to Figure 1; in the azide derivative, the Cl atoms Cl1, Cl2, . . . Cl5 are replaced by N1a, N1b, N1c, N2a, N2b, N2c, . . . N5a, N5b, N5c with Na bound to P, Nb being the central and Nc the terminal N atom.

spectrum in CH₂Cl₂/acetone solution between δ = -200 and -400 .

X-ray Structure Determination for Compound **1**

Crystal Data. 2,4,4,6,6-Pentachloro-2-(piperidyl)cyclotri(phosphazene) (1), $P_3Cl_5N_4C_5H_{10}$, $M =$

396.35, orthorhombic. $a = 8.316(2)$, $b = 17.261(3)$, and $c = 22.007(4)$ Å: $V = 3159(1)$ Å³, space group P_{bca} , $Z = 8$, $D_c = 1.667$ g cm⁻¹. Crystal dimensions $0.20 \times 0.20 \times 0.15$ mm, μ (Mo- K_{α}) = 1.21 mm⁻¹, λ $= 0.71069$ Å, $F(000) = 1584.0$.

Data Collection and Processing. Siemens P4 diffractometer, 20°C, θ /2 θ scan mode, 2 $\theta_{\text{max}} = 60.0^{\circ}$, graphite monochromated Mo- K_{α} radiation, 4558 independent measured reflections, 3140 observed $[I_{net}]$ $>$ 2.5 σ I_{net}]. Absorption corrections were made.

Structure Analysis and Refinement. The structure was solved by direct methods, and all nonhydrogen atoms were refined anisotropically. Refinement was by block-cascade full-matrix least squares to R = 0.0608, $R_w = 0.0871$ ($R_w = 1/[s^2(F_0^2) +$ $(0.1300 \text{ P}) + 1.800 \text{ P}$, where $P = (F_0^2 + 2 F_c^2)/3$. Computations were carried out using the SHELXS-86 and SHELXL-93 program systems and published scattering factors [4–6].

Further details of the crystal structure determinations are available upon request from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, Germany, on quoting the depository numbers CSD-406341, the names of the authors, and the journal citation.

Semiempirical PM3 Computations. All calculations were carried out with the program package HyperChem [7] at the semiempirical PM3 [8] level of theory using a VSTO-3G* basis set. We chose PM3 (which differs from AM1 [9] only in the values of the parameters) since the parameters for PM3 were derived by comparing a much larger number and a wider variety of experimental versus computed molecular properties. The PM3 level of theory is a reparametrization of AM1, which is based on the neglect of diatomic differential overlap (NDDO) approximation. NDDO retains all one-center differential overlap terms when Coulomb and exchange integrals are computed.

RESULTS AND DISCUSSION

The molecular structural parameters of compound **1** were determined experimentally by X-ray diffraction analysis and computed at the semiempirical PM3 level of theory. Figure 1 shows the molecular structure of **1** determined by X-ray diffraction. Table 1 summarizes the most important experimentally obtained and calculated structural parameters for compounds **1** and **2**.

Generally, the calculated and observed structural

parameters for compound **1** are in good agreement. Both molecules, the pentachloro (**1**) as well as the pentaazido derivative (**2**) were calculated to exist in a slight chair conformation (cf. torsion angles in Table 1; cf. also related molecules [10]). For compound **1**, all calculated bond angles nicely reflect the observed trend (within $\pm 5^{\circ}$). The PM3 calculation always seems to predict somewhat too long bond lengths $(0.075 \text{ Å}$ for the P–N distances within the sixmembered ring system, 0.03 Å for the P–Cl bonds, and 0.1 Å for the exocyclic P–N bond; cf. earlier work [1]). This result gives credence to the calculated structural parameters of compound **2** for which there are presently no experimental data available. The PM3-calculated structure and energies of 2,4,4,6,6-pentaazido-2-(piperidyl)cyclotri- (phosphazene) (**2**) (Figure 2) are also summarized in Table 1. As expected, compound **2** also exists in a slight chair conformation with the azideo groups slightly bent $(172-174)$, as one would expect for a covalently bound N_3 unit [1,11].

ACKNOWLEDGMENTS

The authors thank Dr. Andrew L. Porte for supplying compound **1** and Dr. Peter S. White for many helpful discussions. This work was financially supported by the University of Glasgow and the North Atlantic Treaty Organization (NATO, CRG 920034-3 [TMK, PSW]).

REFERENCES

- [1] T. M. Klapötke, P. S. White. *Heteroatom Chemistry*, 8, 1997, 267.
- [2] P. Geissler, Diplomarbeit, TU Berlin, Berlin (1994).
- [3] C. Grundmann, R. Rätz, Z. Naturforsch., 10b, 1955, 116.
- [4] (a) G. M. Sheldrick, *SHELXS-86, Structure Solving Program for Crystal Structure Determination,* University of Göttingen, Germany (1986); (b) G. M. Sheldrick, *SHELXL-93, Program for the Refinement of Crys*tal Structures, University of Göttingen, Germany (1993).
- [5] *International Tables for X-ray Crystallography,* Kynoch, Birmingham vol. IV. (1974).
- [6] (a) C. K. Johnson: ORTEP Plotting. *ORTEP—A Fortran Thermal Ellipsoid Plot Program,* Technical Report ORNL-5138 (1976); (b) S. Motherwell: Pluto Plotting, University Chemical Laboratory, Cambridge, U.K. (1978).
- [7] HyperChem 4.0, Molecular Visualization and Simulation Program Package, Hypercube, Waterloo, Ontario (1994).
- [8] (a) J. J. P. Stewart, *J. Comp. Chem., 10,* 1989, 209; (b) J. J. P. Stewart, *J. Comp. Chem., 10,* 1989, 221.
- [9] (a) M. Dewar, W. Thiel, *J. Am. Chem. Soc., 99,* 1977, 4499; (b) M. J. S. Dewar, M. L. McKee, H. S. Rzepa, *J. Am. Chem. Soc., 100,* 1978, 3607; (c) M. J. S. Dewar,

E. G. Zoebisch, E. F. Healy, *J. Am. Chem. Soc., 107,* 1985, 3902; (d) M. J. S. Dewar, C. H. Reynolds, *J. Comp. Chem., 2,* 1986, 140.

- [10] F. R. Ahmed, S. Fortier, *Acta. Cryst., B, 36,* 1980, 1456.
- [11] I. C. Tornieporth-Oetting, T. M. Klapötke, Angew. *Chem. Int. Ed. Engl., 34,* 1995, 511.